14.8 Eq. (14.9.3) is an approximation for when \(L \gg \Delta L \). The general expression should be \(w = \sqrt[4]{\frac{\lambda^2 L R_{\text{mirror}}^2}{\pi^2 \Delta L}} \). For part (b), you may use the approximation.

14.10 Find \(f^\theta \), \(w_o \), and \(z_o \) for each beam.

1. A laser cavity is composed of two concave end mirrors of radius \(R_1 = 100 \text{ cm} \) and \(R_2 = 50 \text{ cm} \).
 (a) Over what range of mirror separation is the cavity stable?
 (b) If the separation distance \(L \) is chosen to be 125cm, how far will the beam waist be from the 50cm mirror?
 (c) What will \(w_o \) and \(z_o \) be if \(\lambda = 1064 \text{ nm} \)?

2. A Gaussian laser beam is seen to have a 1cm intensity diameter (measured from the 1/e^2 points on each side of the beam). It is also observed to focus to a small spot 1m later. The wavelength is \(\lambda = 1064 \text{ nm} \). What are \(w_o \) and \(z_o \)?

3. A laser cavity is composed of two concave end mirrors of radius \(R_1 = 100 \text{ cm} \) and \(R_2 = \infty \). They are separated by a distance of \(L=50 \text{ cm} \). How far away from the flat mirror is the beam waist located? What are \(w_o \) and \(z_o \) if \(\lambda = 1064 \text{ nm} \)?
4. Show that \(E(\rho, z) = E_0 \frac{w_0}{w(z)} e^{-\frac{\rho^2}{w(z)^2}} e^{\frac{-i \tan^{-1} \frac{z}{z_0} + kp}{z_0^2 R(z)}} \) satisfies the paraxial wave equation

\[
\left(\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + 2ik \frac{\partial}{\partial z} \right) \tilde{E}(\rho, z) = 0.
\]

HINT: Be ready for a mess. It is not so bad if you write \(R(z) \) in terms of \(w(z) \) and use

\[
\frac{\partial w(z)}{\partial z} = \frac{w_0}{\sqrt{1 + z^2/z_0^2}} = \frac{w_0^2 z}{z_0 w(z)} = \frac{2z}{kz_0 w(z)} \quad \text{and} \quad \frac{\partial \tan^{-1} \frac{z}{z_0}}{\partial z} = \frac{1}{z_0(1 + z^2/z_0^2)} = \frac{w_0^2}{z_0 w^2(z)} = \frac{2}{kw^2(z)}.
\]

5. (a) How do the two terms in the paraxial approximation

\[
\left| 2k \frac{\partial \tilde{E}(\vec{r})}{\partial z} \right| \gg \left| \frac{\partial^2 \tilde{E}(\vec{r})}{\partial z^2} \right|
\]

data numerically compare at \(\rho = 0 \) and \(z = 0 \) when \(\lambda = 632\text{nm} \) and \(w_0 = 25\mu\text{m} \)? Assume a TEM\(_{00} \) mode.

(b) Suppose that we are satisfied if the above inequality at \(\rho = 0 \) and \(z = 0 \) is at least as strong as \(100\gg1 \). What is the smallest \(f^\# \) that we can afford for a TEM\(_{oo} \) Gaussian mode? Note: In part (b) you are no longer assuming \(w_0 = 25\mu\text{m} \).

6. A laser beam has a waist of \(w_0 = 0.5\text{mm} \) as it enters a lens of \(f = 200\text{cm} \). Find the new beam waist \(w'_0 \) and its position after the lens if the wavelength is \(\lambda = 1064\text{nm} \).